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Objective: Ultrasound (US) is a medical imaging technique with various therapeutic and diagnostic applications. This study aimed to investigate the effects 
of diagnostic US waves with a frequency of 3.5 MHz and intensity of 65 mW/cm2 on the threshold of neurons’ excitability and the apoptosis induced by 
pentylenetetrazole (PTZ) in rats. 
Materials and Methods: Forty-seven-day-old Wistar rats were randomly divided into five groups. The first group was assigned as the control group, the second 
group was seized by intraperitoneal injection of PTZ, the third, fourth, and fifth groups were given US waves for 5, 10, and 15 minutes, respectively, followed by 
intraperitoneal PTZ injection. The animals were observed and their behavior, including the seizure duration, the number of seizures, and the seizure cessation time 
were recorded for 30 minutes. Subsequently, animals’ hippocampi were removed in order to measure B-cell lymphoma protein 2 (BCL-2) and BCL-2-associated X 
(BAX) by using Western blotting techniques.
Results: The results showed that US waves in the diagnostic frequency range with a duration of 5, 10, and 15 minutes significantly increased the seizure duration 
in the target groups. Furthermore, the simultaneous use of US with the desired times with PTZ increased the number of seizures and prolonged the seizure 
cessation time. PTZ increased the BAX/BCL-2 proteins ratio, and the concomitant use of US and PTZ intensified the impairment. 
Conclusion: This study showed that exposure to US increased the excitability of neurons and exacerbated the seizure effects of PTZ as well as PTZ-induced 
apoptosis in the rat hippocampal cells.
Keywords: Ultrasound waves, seizures, apoptosis, hippocampus, pentylenetetrazole

Amaç: Ultrason (US), çeşitli terapötik ve tanısal uygulamalarda kullanılan bir tıbbi görüntüleme tekniğidir. Bu çalışmada, sıçanlarda 3,5 MHz frekans ve 65 
mW/cm2 yoğunluktaki tanısal US dalgalarının nöronların uyarılabilirlik eşiği ve pentilentetrazol (PTZ) tarafından indüklenen apoptoz üzerindeki etkilerinin 
araştırılması amaçladı.

Gereç ve Yöntem: Kırk yedi günlük Wistar sıçanları rastgele beş gruba ayrıldı. Birinci grup kontrol grubuydu, ikinci gruba intraperitoneal PTZ enjeksiyonu 
ile nöbet geçirtildi, üçüncü, dördüncü ve beşinci gruplara sırasıyla 5, 10 ve 15 dakika US dalgaları uygulandı ve ardından intraperitoneal PTZ enjeksiyonu ile bu 
gruplara nöbet geçirtildi. Hayvanlar gözlemlendi ve nöbet süresi, nöbet sayısı ve nöbet bitiş zamanı dahil olmak üzere davranışları 30 dakika boyunca kaydedildi. 
Daha sonra, Western blot teknikleri ile B-hücresi lenfoma proteini 2 (BCL-2) ve BCL-2-ilişkili X (BAX) düzeylerini ölçmek için hayvanların hipokampusları 
çıkarıldı.

Bulgular: Sonuçlar, 5, 10 ve 15 dakikalık sürelerle tanısal frekans aralığındaki US dalgalarının hedef gruplarda nöbet süresini önemli ölçüde artırdığını 
göstermiştir. Ayrıca US’nin istenilen sürelerle eş zamanlı kullanılması PTZ’nin neden olduğu nöbet sayısını artırmıştır ve nöbet bitiş süresini uzatmıştır. PTZ, 
BAX/BCL-2 protein oranını artırmıştır ve US ve PTZ’nin birlikte kullanımı bozulmayı artırmıştır.
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Introduction
Ultrasound (US) waves have been developed in diagnostic and 

therapeutic modalities, and their utility in the medical industry is 
of great value (1,2). US with diagnostic goals is used in neurology, 
cardiology, obstetrics, and gynecology (3). Monitoring the fetal 
heart, examining growth rate, estimating fetus age, determining 
the fetus’s position, diagnosing ectopic pregnancy, and examining 
ovarian and breast tumors are some diagnostic applications of these 
waves in the field of obstetrics and gynecology (3). Frequencies of 
2 to 18 MHz with an intensity up to 720 mW/cm2 are utilized in 
diagnostic cases (4). In therapeutic cases, however, the frequency 
range is about 0.75 to 3 MHz (5), with intensities between 100-
10000W/cm2 (6).

There is some evidence that frequent exposure to US waves has 
extensive destructive effects on the fetus (7). It has been shown that 
focused US waves reversibly suppress neural conduction (8). These 
waves, with their thermal effect, also cause neural apoptosis (9). 
US radiation causes lower extremity paralysis with myelin damage 
induced by chromatolysis and axonal degeneration in the spinal 
cord and peripheral nerves (10,11). It is reported that the myelin 
membrane is sensitive to US waves which disrupt the development 
of the nodes of Ranvier and cause alteration of myelination (12). 
It was also demonstrated that US exposure modulated presynaptic 
neuron firing rates and increased the dendritic field potential in 
the hippocampus (13). High-intensity US waves impair neural 
function, while low-intensity waves repair damaged nerves and 
improve the rate of transmission and the potential for underlying 
action in these nerves in mice’s tibia (14).

A study by Lee et al. (15) reported that almost no side effect 
was induced by transcranial US stimulation (TUS) on human 
participants, and that only one patient suffered from a temporary 
headache. In another study, in which participants received TUS 
with the frequency of 0.5 MHz and intensities of 17.12 W/cm2 
(I

SPPA) and 6.16 W/cm2 (ISPTA), some ephemeral, low to moderate 
levels of symptoms were reported, such as muscle twitches, neck 
pain, sleepiness, itchiness and headache (16).

One of the electrical manifestations of the brain is the 
occurrence of seizures (17). Seizures are sudden attacks on the 
brain’s electrical activity that can cause loss of consciousness, 
muscle contractions, repetitive movements, and sometimes 
sensory disturbances (18). The most common way to cause seizures 
in laboratory animals is to inject pentylenetetrazol (PTZ), which 
inhibits gamma-aminobutyric acid (GABA) receptors; thereby 
stimulating neuronal activities (19), and quickly disturbing the 
balance between the inhibitory and excitatory systems in the brain 
(20). In studies, creating a seizure model by PTZ comprises a large 
number of signaling pathways that cause neuronal impairment, 
alterations in behavior, intellectual dysfunction, and apoptosis 
induced by seizure (21).

A few studies have been done regarding the effect of US waves 
in the diagnostic range on the electrical activity of brain cells, and 
the effects of US waves on the electrical activity of neurons are not 
completely understood. Therefore, the current study was conducted 

to investigate the effects of US waves on the intensified electrical 
activity of neurons in the brain under the influence of PTZ. 

Materials and Methods

Animals and Experimental Design
The current study was performed on 7-day-old male Wistar 

rats weighing 40-50 grams (provided from animal center, Ilam 
University of Medical Sciences, Ilam, Iran). The animals were kept 
in the laboratory with 12-hour light and dark, temperature of 24 
±1 °C for a week in order to acclimatize. The animals were divided 
into five groups (n=8) as follows: 

Control group (sham), PTZ-induced seizure group (PTZ), 
PTZ+US5, PTZ+US10, and PTZ+US15, groups with 5-, 10- and 
15-minutes exposure to US simultaneous with PTZ, respectively. 
PTZ was purchased from X (CAS 54-95-5). A summary of the 
experimental design is shown in the Table 1.

Ultrasound Waves Application and Pentylenetetrazole 
Injections

In the groups with simultaneous US exposing and PTZ 
injection, first, the US waves with the frequency of 3.5 MHz and 
intensity of 65 mW/cm2 were applied for the desired time (US 
probe was placed on the rat's head). Then intraperitoneal PTZ 
(60 mg/kg, i.p.) injection was performed (22) in order to induce 
seizures and observe behaviors. 

Seizure Monitoring
Immediately after PTZ injection, seizure symptoms were 

evaluated and recorded for 30 minutes, and the seizures’ durations, 
the number of seizures, and seizure cessation time were measured. 
Seizure behavior was monitored according to Racine’s standard 
stages as follows: stage 0: no response; stage 1: facial movements; 
stage 2: head nodding; stage 3: forelimb clonus; stage 4: rearing 
and severe forelimb clonus; stage 5: falling back, hind limb 
extension and, and death (23). 

Western Blot Analysis
To measure BAX and B-cell lymphoma protein 2 (BCL-2) in 

hippocampal tissue by the Western blot method, the animals were 
anesthetized by ether, and the hippocampi were harvested. Then 
tissues were promptly placed in the nitrogen tank and stored in an 

Sonuç: Bu çalışma, sıçan hipokampal hücrelerinde US’ye maruz kalmanın nöronların uyarılabilirliğini artırdığını ve PTZ’nin nöbet etkilerini ve ayrıca PTZ ile 
indüklenen apoptozu şiddetlendirdiğini göstermiştir.
Anahtar Kelimeler: Ultrason dalgaları, nöbetler, apoptoz, hipokampus, pentilentetrazol

Table 1. Experimental design

PTZ injection
Ultrasound waves 
exposure

Group names

--Control (sham)

*-PTZ (II)

**(for 5 minutes)PTZ+US5 (III)

**(for 10 minutes)PTZ+US10 (IV)

**(for 15 minutes)PTZ+US15 (V)
*Shows that ultrasound waves/PTZ injection were applied, PTZ: Pentylenetetrazole
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-80 °C freezer. Total protein was extracted using the instruction 
of the kit, and protein concentration was measured by the BCA 
protein quantification method. Briefly, hippocampal tissues were 
homogenized under cold conditions. Gel electrophoresis was 
performed with 10% separation gel and 5% concentration gel. 
Homogenized hippocampal tissue was exposed to electrophoresis 
on SDS-PAGE. The isolated proteins were then electro transferred 
to PVDF membranes and blocked with 5% skim milk and 0.1% 
tween-20 in tris-buffered saline at room temperature for an hour. 
The membranes were incubated with the desired primary antibodies 
then conjugated to the secondary antibody. Chemiluminescence 
detection of the immune complexes was conducted, and the 
results were later quantified (Bio-Rad, USA). Protein analysis was 
accomplished by anti-human ILK (ab-76468, Priab 1/5000, Sec 
ab1/2000), Bax and Bcl2 (ab- P5498, Priab 1/500, Sigma). 

Ethical Issues
The institutional ethical committee of Ilam University of 

Medical Sciences approved all study protocols (IR.MEDILAM.
REC.1395.66) on 2017.03.03. 

Statistical Analysis
Statistical analysis was performed by SPSS 23 software. Data 

were expressed as mean ± standard error of the mean, and One-
Way ANOVA, post-hoc LSD, and paired t-test were applied with 
the significance level of less than 0.05 (p value ≤0.05).

Results

The Effect of PTZ and Concomitant Exposure to 
Ultrasound Waves on Seizures Duration

As shown in Figure 1, the US exposure time increased 
seizures duration significantly (p<0.05). However, no significant 
differences were observed between groups of PTZ+US10 and 
PTZ+US15 (p˂0.05).

The Effect of PTZ and Concomitant Exposure to 
Ultrasound Waves on the Number of Seizures

Concomitant use of US waves (with different exposure times) 
and PTZ, significantly increased the number of seizures compared 

to the PTZ group (p<0.05). It seemed that the US exposure time 
had an extensive effect on the number of seizures as there were 
significant differences between the group of PTZ+US15 and the 
other groups (p<0.05; Figure 2).

The Effect of PTZ and Concomitant use of Ultrasound on 
the Seizure End Time

As shown in Figure 3, concomitant use of US and PTZ (with 
different exposure times) remarkably increased the seizure end 
time in the target groups compared to PTZ groups (p<0.05). 
However, the US exposure time did not cause any significant 
differences between the groups of PTZ+US5, PTZ+US10, and 
PTZ+US15 (p<0.05).

Molecular and Cellular Findings

The data showed that the BAX/BCL-2 ratio was considerably 
elevated in the PTZ group compared to the control group (p<0.05). 
The ratio got higher when US exposure time increased. The ratio 
was higher in the groups of PTZ+US10 and PTZ+US15 compared 
to the PTZ group (p<0.05; Figure 4).
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Figure 2. The effect of PTZ and concomitant use of ultrasound on 
the number of seizures in four experimental groups; *Shows significant 
difference compared to PTZ group; **Shows significant difference 
compared to PTZ+US5 group; #Shows significant difference compared to 
PTZ+US10 group (p<0.05)
PTZ: Pentylenetetrazole

Figure 3. The effect of PTZ and concomitant use of ultrasound on the 
seizure cessation time in four experimental groups; *Shows significant 
difference compared to PTZ group (p<0.05)
PTZ: Pentylenetetrazole
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Figure 1. The effect of PTZ and concomitant use of ultrasound on 
the seizure’ durations in four experimental groups; *Shows significant 
difference compared to PTZ group; **Shows significant difference 
compared to PTZ+US5 group (p<0.05)
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Discussion
The main purpose of the present study was to investigate the 

US effects in the diagnostic range with a frequency of 3.5MHz 
and intensity of 65 mW/cm2 on electrophysiological properties of 
neurons in the PTZ-induced seizures model.

In accordance with the previous studies, PTZ injection 
caused seizures in the animals (24). PTZ acts by occupying the 
GABA receptor picrotoxin site and inhibiting the chloride 
channel (25), then perturbing the balance between excitatory and 
inhibitory neurotransmitters. As GABA is one of the most critical 
neurotransmitters in the brain, the concentration of GABA or its 
receptors in brain tissue reduces following PTZ injection (16,20). 
Yang et al. (26) found that TUS could also reduce the extracellular 
level of GABA and raise the extracellular level of dopamine and 
serotonin.

On the other hand, auto radiographic research on the rat brain 
reveals that PTZ affects by extending the duration of glutamate 
binding to N-methyl-D-aspartate receptors in the dentate gyrus 
and CA1 areas of the hippocampus (27). It has been shown that 
intracellular calcium ions are elevated during PTZ-induced 
seizures. Calcium channels can play a key role in the regulation 
of seizures by controlling the release of neurotransmitters. PTZ 
also expedites the neuronal bursting activities by altering the 
conduction of sodium ion channels, reducing the neuronal 
excitation threshold, and consequently causing depolarization and 
seizures (28). 

Our study showed that concomitant use of US and PTZ 
increased the number of seizures, the seizure duration, and seizure 
cessation time. Although the exact mechanism of US effects on 
cells is unknown, recent studies have shown physiological effects 
of these waves in excitable tissues (29,30). Few studies have also 
evaluated side effects of US exposure in the diagnostic range; 
however, it has been shown that fetal exposure to US impairs 
brain function and causes some behavioral problems in rodents 

(31,32). In humans, focused US causes neonatal weight loss (33), 
increased left-handedness (34), speech delay (35), and increased 
heat and pain feeling (36). Fry et al. (37) explained that US waves 
modulated neurons’ activity in the spinal nerves in crayfish, 
probably due to US effects on membranous lipid, integral protein, 
and ion channel conductance. Bachtold et al. (13) reported that US 
with an intensity of 1 W/cm2 for 5 minutes and a frequency of 3.5 
MHz increased the action potential range, while an intensity of 3 
W/cm2 decreased the action potential range. High-frequency US 
modulates the electrical excitability of neurons which is directly 
mediated by mechanical forces and not thermal impacts of these 
waves (38,39). Yoo et al. (40), who investigated both excitatory 
and inhibitory modulation of TUS in rabbits, found that longer 
duration of sonication was related with suppressive effects; in 
comparison, shorter duration was related with excitatory effects. 
Besides, the higher intensity seems to induce excitatory impacts 
(41).

Additional studies show that US induces bubble-like 
bioacoustics cavitation in the intramembranous area between 
bilayers lipid of the cell’s membrane, which causes multiple 
changes in cells, such as permeability and transitions via cellular 
mechanic transduction processes and creation of membrane pore 
form (42). In other words, TUS incites cells by affecting the cell 
pores and membrane permeability which causes changes that can 
last for hours (43,44). These changes subsequently boost calcium 
entry into the cell (44). Many mechanical attributes related to 
voltage-dependent ion channels and G-protein-coupled receptors 
can be affected by US waves (45), which open voltage-gated sodium 
and calcium channels and affect the concentration of excitatory 
neurotransmitters (40,46). It is recorded that US waves with an 
intensity of 3 MHz for 40 minutes can increase the concentration 
of intracellular calcium in fibroblasts; and also affect potassium 
entry and exit in mouse thymocytes (47). US probably changes the 
nature of cell membranes and ion channels, possibly by increasing 
the conductance of calcium or other ion channels and modulates the 
excitability of neurons (48). There is a variety of evidence related 
to the role of calcium in homeostasis, control of apoptosis as well 
as cell death (49). Several reports have shown the effect of different 
concentrations of calcium on the early and late stages of apoptosis 
(50), which can induce apoptosis from intracellular sources or 
increased calcium uptake through membrane channels (49). It has 
also been reported that blocking calcium receptors reduces BAX 
levels and caspase-3 activity by preventing intracellular calcium 
accumulation (51). PTZ shifts calcium from intracellular sources 
into the cytoplasm, which is ameliorated by calcium channel 
blockers. PTZ has also been shown to induce apoptosis in cultured 
hippocampal cells in rats by inducing seizures via caspase-3 and 
releasing cytochrome C (52,53). 

Another mechanism of apoptosis is an increased BAX/BCL-2 
ratio. The BCL-2 family includes apoptotic inhibitor and promoter 
proteins that are key regulators of this process. The BCL-2 protein 
is a suppressor, while BAX promotes the process of apoptosis 
(54). Similarly, Skommer et al. (55) reported that seizures caused 
neuronal apoptosis, especially in the hippocampus, accompanied 
by increased BAX and decreased BCL-2 proteins. In the present 
study, in addition to the adverse effect of PTZ, we observed a 
significant difference between PTZ+US10 and PTZ+US15 groups 
compared with the PTZ group in terms of the BAX/BCL-2 ratio, 
which implied an important role of time exposure to US waves.

Figure 4. BAX and BCL-2 proteins expression (A) and ratio (B) in five 
experimental groups; *Shows significant difference compared to sham 
group (p<0.05); **Shows significant difference compared to PTZ group 
(p<0.05)
PTZ: Pentylenetetrazole
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Study Limitations
The limitation of this study was the low number of animals. 

A larger number of animals could provide more valid data with 
less standard error. However, it was impractical due to the policy 
of Institutional Animal Care and Use Committee of the Medical 
University of Ilam. Furthermore, our research only assessed US 
waves with the frequency of 3.5 MHz and intensity of 65 MW/
cm2 (mainly used frequency and intensity in the diagnostic range 
in studies), and it was inapplicable for us to investigate the other 
US characteristic levels. However, future studies should consider 
and compare various frequencies and intensities in the diagnostic 
spectrum.

Conclusion
In conclusion, the results presented here provide evidence of 

the deleterious consequences of diagnostic US waves on seizure-
like behaviors and of the increased number of seizures, seizure 
duration, and seizure cessation time in PTZ-induced male Wistar 
rats. Besides, the simultaneous use of US waves and PTZ causes 
apoptosis and increases BAX/BCl-2 ratio in hippocampal cells. 
However, further studies are required to comprehensively elaborate 
on the mechanism underlying US waves and PTZ in neural cells.
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