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ABSTRACT

Objectives: This study aimed to detect the presence of mutations in the spastin (SPG4) and paraplegin (SPG7) genes in patients 
with primary progressive multiple sclerosis (PPMS) to determine the role of hereditary spastic paraplegia (HSP) genes on the 
susceptibility to PPMS, clinical course, and severity and to reveal its potential role on motor pathways leading to spastic paraparesis 
clinic.

Patients and methods: The descriptive study was conducted with 25 patients with PPMS. The patients were divided into two 
groups: those presenting with (n=16; 8 males, 8 females; mean age: 47.2±8.4 years; range, 32 to 58 years) and without (n=9; 5 males, 
4 females; mean age: 42.8±5.8 years; range, 34 to 49 years) spastic paraparesis. The SPG4 and SPG7 genes from the purified DNAs, 
which were isolated from blood samples, were sequenced to include all exons and introns. The variations detected as a result of 
the analysis were evaluated in terms of the suitability of the reading parameters. The frequency of variants in populations and the 
number of homozygous variants in individuals were analyzed with the gnomAD (Genome Aggregation Database). Of the detected 
variants, only pathogenic and possibly pathogenic variants that could be clinically associated were reported.

Results: In the genotyping of the two groups with PPMS, both with and without spastic paraparesis, no pathogenic or probable 
pathogenic variant was observed in terms of SPG4 and SPG7 genes.

Conclusion: We found no evidence that the SPG4 and SPG7 genes were involved in the pathogenesis, clinical course, and severity 
of PPMS. However, the question of what kind of effects these genes have on susceptibility to multiple sclerosis and the course 
remains unclear. 
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Several single gene disorders share clinical and 
radiologic characteristics with multiple sclerosis 
(MS) and have the potential to be overlooked in the 
differential diagnostic evaluation of both adult and 
pediatric patients with MS.[1] Primary progressive 
multiple sclerosis (PPMS) is characterized by a 
gradual accumulation of disability that may occur 
from the onset of the disease. The underlying disease 
mechanisms of PPMS are complex and involve a variety 
of different mechanisms and pathways, including 
inflammation, axonal degeneration, microglial 
activation/oxidation byproducts, mitochondrial 

damage, and glutamate excitotoxicity.[2] In addition, a 
genetic predisposition is thought to play a role in the 
pathogenesis and phenotypic expression of PPMS, 
and in some cases, pathogenic genes that could 
contribute to progressive disability independent of 
immune system-mediated mechanisms were also 
identified.[3]

Hereditary spastic paraplegia (HSP) is a rare group 
of neurodegenerative diseases characterized by high 
genetic heterogeneity and progressive spasticity and 
weakness in the lower extremities.[4] The emergence 
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of white matter lesions in the central nervous system 
in some HSP variants and additional symptoms 
such as cognitive dysfunction, ataxia, and optic 
neuropathy with spastic paraplegia may complicate 
the differential diagnosis with PPMS.[5] In recent 
years, beyond clinical and radiological similarity, 
the detection of HSP-related spastin (SPG4) and 
paraplegin (SPG7) gene mutations in some PPMS 
has raised questions about whether this represents 
comorbidity or a pathogenic relationship.[6,7]

Mutations in the SPG4 locus mapped to 
chromosome 2p22.[3] cause the most common 
autosomal dominant form of HSP.[8] The SPG4 
gene encodes spastin, a 795 amino acid protein, 
a member of the AAA (ATPase associated with 
various cellular activities) protein family. By sharing 
an ATPase domain, spastin plays important roles 
in a variety of cellular critical processes, including 
membrane trafficking, intracellular motility, organelle 
biogenesis, protein folding, and proteolysis.[9] It is 
also an ATPase microtubule severing enzyme that 
promotes cytoskeletal remodeling associated with 
membrane remodeling.[10] In addition, spastin has 
key functions in axonal transport and regeneration 
in neurons.[11]

The SPG7 locus mapped to chromosome 
16q24.3 is responsible for an autosomal recessive 
HSP.[12,13] The SPG7 gene encodes paraplegin, a 
member of the AAA protein family.[13,14] Paraplegin 
is located in the mitochondrial inner membrane 
and plays a role in proteolytic and chaperone-like 
functions.[13] Studies showed that loss of paraplegia 
caused complex I deficiency and increased 
sensitivity to oxidative stress.[15] Paraplegin is also 
required for ribosome assembly and translation in 
mitochondria.[16]

The fact that PPMS and HSP show similar 
progressive degeneration in the corticospinal tract 
axons, coupled with the association of some MS 
cases with HSP, has led to the hypothesis of 
a pathogenetic relationship between these two 
diseases. Hence, this study aimed to examine the 
presence of SPG4 and SPG7 gene mutations in 
patients with PPMS to determine the role of HSP 
genes on the susceptibility, clinical course, and 
severity of PPMS, as well as to reveal the possibility 
of their effects on the motor pathways that lead to 
spastic paraparesis.

PATIENTS AND METHODS

The descriptive study was conducted with 
25 patients diagnosed with PPMS in accordance with 

Polman et al.’s[17] diagnostic criteria for MS, a revision 
to the McDonald criteria. The patients were followed 
in the neurology outpatient clinic of the Necmettin 
Erbakan University, Meram Faculty of Medicine 
Hospital, between September 2020 and February 
2021. The patients were divided into two groups: 
those with spastic paraparesis similar to HSP (Group 
1, n=16; 8 males, 8 females; mean age: 47.2±8.4 years; 
range, 32 to 58 years) and those without spastic 
pareparesis (Group 2, n=9; 5 males, 4 females; 
mean age: 42.8±5.8 years; range, 34 to 49 years). 
Patients diagnosed with clinically isolated syndrome, 
radiologically isolated syndrome, relapsing-remitting 
MS (RRMS), or secondary progressive MS (SPMS) 
were excluded from the study. A control group 
was not formed since pathogenic variants were not 
expected in the normal population for the SPG4 and 
SPG7 genes. The study protocol was approved by 
the Necmettin Erbakan University, Meram Faculty of 
Medicine Ethics Committee for Non-Pharmaceutical 
and Medical Device Research (2020/2800 decision 
number). Written informed consent was obtained 
from all participants before the study. The study was 
conducted in accordance with the principles of the 
Declaration of Helsinki.

Neurological and physical examinations of all 
patients were performed by the same neurologist. 
Demographic characteristics, age at onset of disease, 
age at diagnosis, duration of disease, disability score 
measured by the Expanded Disability Status Scale 
(EDSS), and other associated clinical features were 
recorded.

The remnants of blood taken routinely during 
the examinations were included in the study. After 
the blood samples were taken into EDTA tubes, 
they were kept in a cooler at –20°C in the genetics 
laboratory.

Peripheral blood samples taken from the 
patient group were automatically isolated using 
the MagPurix Blood DNA Extraction Kit 200 
with the MagPurix 12A Automated Nucleic Acid 
Purification Instrument (Zinexts Life Science 
Corporation, New Taipei City, Taiwan). It was 
confirmed that the DNA samples of all individuals 
were isolated with quality control. Obtained 
samples were amplified by polymerase chain 
reaction using appropriate temperature regulation 
with the SimpliAmp Thermal Cycler device 
(Thermo Fisher Scientific Inc., Waltham, MA, USA). 
After preparing the cDNA library from the purified 
DNAs obtained, SPG4 and SPG7 genes were 
extracted using previously described workflows 
with the Celemics Neuromuscular Diseases Kit 



Turk J Neurol238

(Celemics, Inc., Geumcheon-gu, Seoul, Korea) 
and the Illumina Miniseq Platform (Illumina, San 
Diego, CA, USA). Sequencing included all exons 
and introns.

Data analyses

The raw data obtained from sequencing were 
analyzed after confirming that more than 95% of 
the targeted genes were covered at a read depth 
of 20¥. The variations detected as a result of the 
analysis were evaluated in terms of the suitability 
of the reading parameters using the Integrative 
Genomics Viewer version 2.8.6 application with 

the contributions of research assistant doctors and 
lecturers of the Department of Medical Genetics. 
The frequency of variants in populations and the 
number of homozygous variants in individuals were 
analyzed with the gnomAD (Genome Aggregation 
Database). The evaluations in the ClinVar database, 
the American College of Medical Genetics and 
Genomics (ACMG) classifications in the Franklin 
and Varsome databases, the estimates of in silico 
prediction tools such as MutationAssessor, SIFT, 
PolyPhen2, MutationTaster, FATHMM, Dann, and 
REVEL, the evolutionary conservation degree of 
these regions, the conservation status of the amino 

TABLE 1
Comparative statistical analyzes of demographic, clinical, and genetic data

Group 1 (n=16) Group 2 (n=9)

n % Mean±SD n % Mean±SD p

Age (year) 47.2±8.4 42.8±5.8 0.112**

Sex
Male
Female

8
8

50.0
50.0

5
4

55.6
44.4

0.790*

Onset age (year) 35.75±7.20 35.22±6.72 0.977**

Diagnosis age (year) 36.87±7.35 37.22±6.38 0.755**

Disease duration (year) 11.44±6.02 7.56±5.25 0.099**

EDSS score 5.44±1.38 3.33±0.71 0.001**

HSP family history
Existent
Nonexistent

0
16

0.0
100.0

0
9

0.0
100.0

Spastin (SPG4) mutation
Existent
Nonexistent

0
16

0.0
100.0

0
9

0.0
100.0

Paraplegin (SPG7) mutation
Existent
Nonexistent

0
16

0.0
100.0

0
9

0.0
100.0

Group 1: pwPPMS with spastic paraparesis; Group 2: pwPPMS without spastic paraparesis; SD: Standard deviation; EDSS: expanded disability 
status scale; HSP: Herediter spastic paraplegia; * Statistical significance in the Pearson’s Chi-squared test; ** Statistical significance in the 
Mann-Whitney U test; Bold: Statistically significant results.

TABLE 2
Population frequency values and number of homozygous individuals of the SPG7 gene c.1032 

C>T (rs116319889) variant specified on the gnomAD

Single nucleotide variant 16-89598356-C-T

Exomes Genomes Total

Allele count 1240 127 1367

Allele number 250820 31394 282214

Allele frequency 0.004944 0.004045 0.004844

Number of homozygotes 10 0 10

Popmax filtering AF (95% confidence) 0.007329 0.005631

AF: Allele frequency.
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acid change in the identified variant (if present), 
the clinical data of the patients, and the literature 
information available on PubMed were all assessed 
together. These variants were classified according to 
the rules of the Human Genome Variation Society 
and the ACMG criteria.[18] It was deemed appropriate 
to report only pathogenic and possibly pathogenic 
variants that could be clinically associated.

Statistical analysis

Data were analyzed using IBM SPSS version 
20.0 software (IBM Corp., Armonk, NY, USA). 
Continuous variables were expressed as 
mean ± standard deviation (SD). Categorical 
variables were expressed as frequency (n) and 
percentages (%). The Pearson chi-square test was 
used to compare categorical variables between the 
two groups, and the Mann-Whitney U test was used 
to compare continuous variables. A p-value <0.05 
was considered statistically significant.

RESULTS

In Group 1, the mean age of onset was 
35.75±7.20 years, and the mean age at diagnosis 
was 36.87±7.35. In Group 2, the mean age of 
onset was 35.22±6.72 years, and the mean age at 
diagnosis was 37.22±6.38. There was no statistically 

significant difference between Group 1 and 
Group 2 in terms of sex, age, age at onset, age at 
diagnosis, and disease duration (p=0.790, p=0.112, 
p=0.977, p=0.755, and p=0.099, respectively). The 
mean EDSS score was 5.44±1.38 in Group 1 
and 3.33±0.71 in Group 2, and the EDSS score 
was statistically significantly higher in Group 1 
(p<0.001). None of the patients had a family history 
of HSP, PPMS, or undiagnosed spastic paraparesis. 
In the genotyping of the two groups with PPMS, 
both with (Group 1) and without (Group 2) spastic 
paraparesis, no pathogenic or possible pathogenic 
variants were observed in terms of genes involved 
in the pathogenesis of HSP (SPG4 and SPG7). The 
comparison of demographic, clinical, and genetic 
data of the participants in Group 1 and Group 2 is 
given in Table 1.

The gene coverage rates of SPG4 and SPG7 genes 
of the patients included in the study were over 
95%. Synonymous benign c.1032 C>T (rs116319889) 
variant was detected in the SPG7 gene of two 
patients in Group 1 (Figure 1).

The SPG7 gene c1032. C>T synonymous variant 
was analyzed according to the ACMG classification 
in the VarSome and Franklin databases. A benign 
variant was found in both databases. This benign 
variant was not compatible with significant clinical 

Figure 1. Image of the c.1032 C>T (rs116319889) variant in the paraplegia (SPG7) gene in IgV 2.8.6. with read quality 
parameters.
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change. Additionally, these variants had no effect on 
disease severity and clinical status in PPMS (Table 2).

DISCUSSION

Multiple sclerosis is characterized by marked 
clinical heterogeneity. Symptoms are variable, and 
the long-term course is often difficult to predict. 
However, the progressive phase of the disease is 
associated with the accumulation of irreversible 
functional disability. In all phenotypes of MS, 
an ongoing pathological process in the form 
of inflammation, demyelination, remyelination, 
axonal loss, and glial scar formation is 
observed.[19,20] It is suggested that progressive 
forms of MS represent a largely neurodegenerative 
process and that the infiltrative inflammation 
evident in RRMS is relatively rare in progressive 
forms.[21] Recently, genes responsible for the 
protection of axons in the corticospinal and 
sensory pathways have started to attract attention 
among the factors that will affect the clinical 
process in MS. However, it remains unclear 
whether genetic variations affect the course of 
the disease. Hereditary spastic paraplegia is 
a retrograde distal axonopathy of the longest 
descending motor fibers of the corticospinal tract 
and dorsal columns with clinical and radiological 
features similar to PPMS.[5] The notion that 
patients with PPMS may be rich in HSP-related 
mutations that cause progressive axonal damage 
is consistent with the observation that the most 
common clinical presentation in PPMS is a 
progressive spastic paraparesis. From this point 
of view, we investigated the relationship of two 
genes (SPG4 and SPG7), which are best known 
to cause HSP, with PPMS susceptibility and 
clinical outcomes. We did not detect homozygous 
mutations with next-generation direct sequencing 
of the SPG4 and SPG7 genes in any of the 
25 patients with PPMS. A synonymous benign 
c.1032 C>T (rs116319889) variant was detected 
in the SPG7 gene in only two patients with 
PPMS with spastic paraparesis. Although the 
proposed hypothesis was strong and logical, the 
results obtained from SPG4 and SPG7 genotyping 
revealed that these genes did not contribute to 
the pathogenesis of PPMS.

DeLuca at al.[22] investigated single nucleotide 
polymorphisms in a cohort of 112 patients with 
benign MS and 51 patients with malignant MS to 
detect variants in 11 genes known to be involved 
in the pathogenesis of HSP, including SPG4 and 
SPG7. Although SPG4 appeared to be a strong 

susceptibility locus for MS in this study, the results 
obtained did not show any relationship between 
the eleven genes involved in the pathogenesis of 
HSP and MS susceptibility or disease severity. In 
contrast, Jia et al.[23] emphasized that potentially 
pathogenic HSP mutations (e.g., SPG7, SPG10, 
and SPG31) were significantly enriched in 
315 patients with PPMS compared to 987 controls 
in their meta-analysis with three replication 
cohorts. However, they did not find a significant 
enrichment in patients with RRMS compared to 
controls, although they observed a trend towards 
enrichment of HSP-related variants in patients with 
PPMS compared to those with SPMS, but this was 
not considered statistically significant. In addition, 
they did not observe a significant difference 
between patients with PPMS, patients with SPMS 
carrying the HSP variant, and those not carrying 
the variant. They stated that the enrichment of 
spastic paraplegia variants was specific to patients 
with a progressive disease course and was not 
present in all forms of MS and that rare HSP-related 
variants modulated the risk of developing a 
progressive disease course independent of the 
overall genetic burden associated with the risk 
of developing MS. Criscuolo et al.[24] evaluated 
whether CYP7B1 gene changes played a role in 
the MS phenotype by screening for mutations in 
the CYP7B1 (SPG5) gene in 117 patients with MS 
(43 PPMS, 22 progressive-relapsing MS, 26 RRMS, 
and 26 SPMS). While the researchers did not find 
SPG5 patients (homozygous mutations) in their 
cohort, they identified three heterozygous carriers 
for CYP7BI variations among patients with MS. 
The common feature of these three carriers, of 
which two were PPMS and one was SPMS, was 
a family history of HSP and some autoimmune 
diseases.

The similarity of clinical and radiological 
presentations of PPMS and HSP from time to time 
may cause confusion and misdiagnosis. In addition, 
although rarely, there are reports of patients with 
PPMS with SPG2,[25-27] SPG4,[6,28,29] SPG7,[7] and 
SPG11[30,31] gene mutations in the literature. The 
most important feature in these patients with 
MS with comorbid HSP was the presence of a 
family history of HSP in the majority. This is 
likely because, unlike PPMS, more than seventy 
different genetic forms were identified in HSP, 
including all patterns of Mendelian inheritance 
(autosomal dominant, autosomal recessive, and 
X-linked) and non-Mendelian mitochondrial 
maternal transmission.[22]
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Leptomeningeal inf lammation, oxidative 
stress directing mitochondrial damage, chronic 
microglial activation causing oligodendrocyte 
dysfunction and axonal damage, and age-related 
iron accumulation are the putative mechanisms 
in the pathogenesis of PPMS.[21,22,32] The absence 
of pathogenic and possibly pathogenic SPG4 and 
SPG7 gene mutations in our PPMS patient group 
showed that there was no relationship between 
PPMS and HSP in terms of pathogenesis. In 
addition, there was no family history suggestive 
of HSP or undiagnosed spastic paraparesis among 
our patients. We believe that in cases where a 
patient with a clinically evident PPMS diagnosis 
with spastic paraparesis is misdiagnosed or HSP 
comorbidity is suspected, an in-depth analysis 
of the family history will lead the clinician 
to the correct diagnosis, avoiding unnecessary 
and expensive genetic studies. Our study 
demonstrated the importance of laboratory (blood 
tests for differential diagnosis, brainstem evoked 
potentials, and cerebrospinal fluid examination) 
and neuroradiological evaluation, together with a 
comprehensive medical history and neurological 
examination, and that the McDonald criteria are 
sufficient for diagnosis. Moreover, the results 
showed that PPMS was not misdiagnosed in the 
population we studied.

This study had some limitations. Some forms 
of MS, such as RRMS and SPMS, were not 
included in the study. In addition, the other 
gene mutations observed in HSP were not 
evaluated. The single-center design and the low 
sample size limited the generalizability of the 
results. Therefore, studies with larger samples are 
needed to confirm our results. Given that axonal 
degeneration is important in progression in MS 
and that irreversible clinical disability is associated 
with such axonal loss, MS-associated variants of 
genes involved in maintaining axonal integrity 
should be explored. These efforts will also guide 
the development of effective treatments that slow 
and prevent disability in patients with progressive 
forms of MS.

In conclusion, the absence of SPG4 and SPG7 gene 
mutations indicated that there was no relationship 
between PPMS and HSP in terms of pathogenesis 
and that these gene mutations did not have an 
effect on the motor pathways that led to the spastic 
paraparesis phenotype in patients with PPMS.
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