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ABSTRACT

Objectives: The study aimed to analyze the brain white matter hyperintensities (WMHs) of patients with vascular dementia (VaD) 
and Alzheimer’s disease (AD) using magnetic resonance imaging to determine whether white matter lesions in the brain could be 
detected by a computer using image processing methods.

Patients and methods: In this retrospective observational study, a unimodal, unsupervised, and automatic method was 
developed, and magnetic resonance imaging of 35 patients were examined. Of the 35 patients, 19 (14 males, 5 females; mean 
age: 73.2±6.7 years; range, 56 to 83 years) were picked from patients with AD or VaD who were admitted to a neurology clinic 
between January 2016 and December 2022 (Group 1). The remaining 16 patients (10 females, 5 males; mean age: 80.4±5.4 years; 
range, 69 to 92 years) were included from the ABVIB (Aging Brain: Vasculature, Ischemia, and Behavior) study from the ADNI 
(Alzheimer’s Disease Neuroimaging Initiative) database (Group 2). To calculate the volume of WMHs, a detailed analysis was 
conducted. Initially, skull stripping was performed, and then the brain was segmented. Afterward, two types of masks (Mask-
1 and Mask-2) were obtained by applying painting, decreasing, and blurring processes to the segmented white matter. These 
masks limited the region that was searched for WMHs. With this limitation, false positives that could arise from gray matter 
intensities were tried to be prevented. To evaluate the accuracy of WMH detection, a user interface was developed, and manual 
marking was conducted by an expert neurologist. After WMH detection, WMH volumes were calculated.

Results: For Group 1, the similarity index was found to be 0.76 for Mask-1 and 0.80 for Mask-2, while for Group 2, the similarity 
index was 0.71 for Mask-1 and 0.87 for Mask-2. In patients with AD, the mean WMH lesion load (LL) was 15.16±16.59 mL. In 
patients with VaD, who were expected to suffer more from WMHs, the mean WMH LL was 29.22±11.40 mL. In Group 2, the mean 
WMH LL was 17.77±12.26 mL.

Conclusion: This study may contribute to the literature since it is an automatic, unimodal, and unsupervised method that was 
applied to both a completely unique data set with many different scanning parameters and an open database data set.

Keywords: Alzheimer’s disease, magnetic resonance image, vascular dementia, white matter hyperintensity.

Patients who have experienced vascular health 
issues, such as stroke and hypertension, often 
have white matter hyperintensities (WMHs) in their 
brains.[1] White matter hyperintensities are areas 
of tissue that result from the demyelination of 
myelinated axons of neurons in the white matter 
(WM) of the brain.[2-4] While WMHs can also be 

observed in healthy individuals, they are generally 
considered to be indicators of certain neurological 
diseases that predominantly affect elderly people, 
such as vascular dementia (VaD), cognitive 
impairment, stroke, and cerebrovascular disease. 
White matter hyperintensities are also detected in 
individuals with VaD and in nearly 60% of patients 
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with Alzheimer's disease (AD).[5] In clinical practice, 
computed tomography and magnetic resonance 
imaging (MRI) are commonly used for detecting 
WMHs.

Many studies on WMHs are present in the 
literature.[2-10] It is possible to classify the methods for 
detecting WMHs in different ways (e.g., supervised/
unsupervised, semi-automatic/fully automatic, 
and unimodal/multimodal). The advantages and 
disadvantages of these methods will be discussed in 
the discussion section. The most preferred method, 
unsupervised, unimodal, and fully automatic 
segmentation of WMH, is still not completely 
resolved. However, there are numerous studies on 
the quantitative segmentation of WMH in various 
patient groups.[2,3,6,8,10-28]

This study proposed an unsupervised, 
automated, and unimodal method for age-related 
WMH detection by studying both images from real 
patients with dementia and open database images. 
For this purpose, the brain was segmented, and 
then two types of masks (Mask-1 and Mask-2) were 
developed in Matrix Laboratory (MATLAB, version 
R2018b) by applying painting, decreasing, and 
blurring processes to the segmented WM. These 
masks were applied to images to limit the regions 
of interest (ROI) with WMHs. With this limitation, 
we aimed to prevent false positives (FPs) that 
may arise from gray matter (GM) intensities. An 
interface that allows manual marking of true and 
falsely detected areas was developed to evaluate 
the performance of detection.

PATIENTS AND METHODS

In this retrospective observational study, two 
types of data were used. First, axial T2-weighted 
FLAIR (fluid-attenuated inversion recovery) MRI 
scans of 19 patients who were admitted to the 
neurology clinic of the Bakırköy Dr. Sadi Konuk 
Training and Research Hospital between January 
2016 and December 2022 were used (Group 1). 
The determination of images for the data set was 
pointed out by an expert neurologist. Since MRI 
scans were achieved with very different protocols 
for Group 1, the data acquisition protocols are 
presented in Table 1.

Beside this unique data set, we aimed to 
demonstrate the validity of this method on images 
taken according to a fixed protocol. Therefore, 
the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) database, in which MRI and other scans and 
biosamples of neurological patients are available 

through different application processes,[29] was 
applied. Images and data from the ADNI database 
were used in different studies in the literature.[28,30,31] 
To be coherent with the subject of this study, data 
from subjects with vascular or ischemic disease were 
preferred. The ABVIB (Aging Brain: Vasculature, 
Ischemia, and Behavior) study provided the 
necessary data.[29] Sixteen axial T2-weighted FLAIR 
MRI scans from the ABVIB study were analyzed 
in this study (Group 2). According to the DICOM 
(Digital Imaging and Communications in Medicine) 
tags, these 16 images were scanned with a GE Signa 
HDxt device (General Electric Healthcare, Chicago, 
Illinois, USA), which has three Tesla magnetic fields. 
All images had 42 slices, with a slice thickness of 
5 mm and pixel spacing of 0.8594\0.8594.

In Group 1, 15 patients had AD 
(10 males, 5 females; mean age: 74±5.3 years; 
range, 64 to 84 years). The remaining four 
patients had VaD (all male; mean age: 70.3±11.3 
years; range, 59 to 82 years). The mean age 
of all 19 patients in Group 1 was 73.2±6.7. 
Group 2 included 16 patients with WMHs 
(10 females, 5 males; mean age: 80.4±5.4 years; 
range, 69 to 92 years). One patient in Group 2 did 
not declare their sex.

In this study, WMH determination was studied 
only using FLAIR images. The flowchart of the WMH 
detection method is shown in Figure 1.

Skull stripping

Skull stripping (brain extracting), which is 
usually the first step in brain image processing, is 
concerned with the separation of the predominant 
tissues of the brain (GM, WM, and cerebrospinal 
fluid) from other tissues. In this study, BET 
(Brain Extraction Tool), a tool of the FMRIB 
Software Library developed at Oxford University,[32] 
was used for skull stripping. After skull stripping, 
intensity values of each image were normalized to 
the range of 0 to 255.

Creating the WM Mask-1

White matter hyperintensities appear brighter 
than the surrounding healthy WM tissue; 
however, their intensities are quite similar to GM 
intensities in FLAIR modality, which makes WMH 
determination more challenging. In some studies, 
it was observed that various postprocessing steps 
were preferred to correct false positives, such as 
GMs classified as WMHs or the effects of flow 
artifacts.[2,3,6,10,14,20,22,23,25,26] In this study, it was 
assumed that excluding GMs from the ROI can 
prevent false positives at the beginning of the 
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process. Thus, the aim was to determine WMHs 
only in WM areas. First, the brain was segmented 
to identify the WM. For WM segmentation, 
statistical parametric mapping (SPM, version 
SPM12), a MATLAB-based program developed by 
University College London, was used. Statistical 
parametric mapping has open-source code, and it 
allows users to develop new routines; therefore, 
it is frequently used in the literature.[3,33,34] In 
this study, segmentation was processed in native 
space. Sample distance was set to default,[3] 
affine regularization was applied using the ICBM 
template for European brains, smoothness was set 
to default (0), and the number of Gaussians was 
set to 1. White matter areas segmented by SPM 
were not used to determine WMHs but rather to 
determine the boundaries within which WMHs 
could be identified. The detection of WMH could 
be conducted on skull-stained images or usual 
images.

As mentioned before, WMHs contrast with WM 
but are similar to healthy GM intensities. Therefore, 
when we analyzed the areas determined by SPM as 
WM, some included WMH areas, while others did 

not. To overcome this challenge, a better mask was 
created to SPM's WM areas. To determine the outer 
boundaries of the WM segmented by SPM and to 
use the inner areas as a mask, an algorithm called 
“painting” was developed on MATLAB. In painting, 
the image was scanned with a 3¥3 window, and a 
negative value was assigned to all pixels that were 
adjacent to the initial pixel. Thus, WMH areas, which 
were inside the WM but were not classified as WM 
by SPM remained nonnegative, unless they were 
adjacent to non-WM pixels. After painting, pixels of 
nonnegative values were assigned 1, and pixels of 
negative values were assigned as 0. Thus, a mask 
that consisted of only 1s and 0s was obtained.

In case the pixels close to GM features in the 
outer boundaries were observed, 1 pixel was 
decreased from the outer boundaries of the mask. 
This process was called “decreasing.” After painting 
and decreasing, Mask-1 was obtained and applied. 
Figure 2 demonstrates an example of Mask-1.

Creating Mask-2 by Improving Mask-1

Painting presented expected results in images 
where SPM’s WM boundaries drew a closed shape 

Figure 1. Flowchart of the WMH detection method.
WMH: White matter hyperintensity; BET: Brain extraction tool; SPM: Statistical parametric mapping; WM: White matter.
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around the ventricles (Figure 2). However, in images 
where ventricles were neighbored by areas outside 
the brain tissue, some WMHs were not included 
in the mask (Figure 3). Therefore, Mask-1 needed 
improvement.

The Mask-2 algorithm checked whether there 
was a negative value in the middle of the image 
after painting. If there was one, the image was 
blurred by a Gaussian filter before painting. 
This was called “blurring.” With blurring, it was 
aimed to close the little gaps that caused the 
painting process to involve the ventricles and to 
include the WMHs that were near the ventricles, 
which were included in the mask (Figure 4). 
However, besides these WMH pixels, blurring 
could cause unnecessary pixels at the boundaries. 
For this reason, decreasing was applied to blurred 
images five times (the number was determined 
empirically). After all these steps, Mask-2 was 
obtained. Images obtained with these processes 
are shown in Figure 4. As shown in Figure 4, 

Mask-2 included areas that could not be included 
by Mask-1 in Figure 3.

The intensity threshold

This step aimed to determine the pixels whose 
intensities were above the threshold as WMHs 
by applying an intensity threshold to the masked 
images. Mean and standard deviation values were 
used to determine the threshold value, as in some 
other studies.[21-23]

The mean and standard deviation values of the 
data were calculated. The threshold values were 
empirically calculated according to Equation 2.1, as 
shown below:

Figure 2. An example for Mask-1. (a) Skull-stripped image, (b) Mask-1 and (c) applying Mask-1 to skull-stripped image.

(a) (b) (c)

Figure 3. White matter hyperintensities were not included in the mask shown with red arrows. (a) Original 
images, (b) applying Mask-1.

(a) (b)

µ+20s if s ≤ 5
µ+10s if 5 < s ≤ 9
µ+2s if 9 < s≤ 15
µ+1,25s if 15 < s≤ 40
µ+s o.w.

(2.1)th= Ì
Í
Í

Í
Í
Ï

Ï
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After the intensity threshold was applied, 
determined WMHs smaller than 5 pixels were 
removed (the number was determined empirically) 
for FP reduction. The estimated WMHs after these 
steps are shown in Figure 5.

Lesion load (LL) calculation

White matter hyperintensity volumes were 
calculated using the data presented in Table 1. 
The volume of a voxel (V) was calculated with the 
following formula:

V=st ¥ ps2   (2.2) 

Here, st represented slice thickness, and ps 
represented pixel size. Afterward, the total number 
of voxels was multiplied by the volume of a voxel. 
The final volumes are presented in Tables 2 and 3 
for Group 1 and Table 4 for Group 2.

Evaluation

In many studies, the results of WMH detection 
were evaluated by comparing them with the 

manual segmentation performed by an expert 
neuroradiologist.[2,3,6,10 -12,14-17,19-22,24-27] Similarly, 
manual marking performed by a specialist 
neurologist was used for evaluation in this study. 
A user interface was developed with MATLAB 
App Designer, and true positive (TP), FP, false 
negative (FN), and true negative (TN) areas were 
determined. After obtaining TP, FP, and FN, the 
images were colorized as shown in Figure 6 for 
Group 1 and Group 2.

After these steps, the similarity index (SI) and 
sensitivity values were calculated to measure the 
performance of the proposed method.[8,16,24]

The codes used in this study are available on 
GitHub.[35]

Figure 4. An example for Mask-2. (a) Skull stripped image, (b) Applying Mask-2.

(a) (b)

Figure 5. Estimated WMHs. (a) Skull-stripped image, (b) estimated WMHs using Mask-1, and (c) estimated WMHs using 
Mask-2.
WMHs: White matter hyperintensities.

(a) (b) (c)

2TP
2 TP+FP+FN

TP
TP+FN

SI= (2.3)

(2.4)Sensitivity=
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RESULTS

Brain WMH volumes were analyzed in both AD 
and VaD patients and the MRI scan protocols used 
for these analyses are detailed in Table 1.

When Table 2 is analyzed, the mean WMH LL for 
AD was 15.16±16.59 mL. For VaD, the mean WMH LL 
was 29.22±11.40 mL, approximately twice the LL in AD.

As for Group 2, since the patients’ clinical 
findings could not be retrieved, the type of 
disease they had could not be determined. The 
mean WMH LL was calculated as 17.77±12.26 mL 
for Group 2.

Tables 3 and 4 present the SI and  sensitivity 
values for both Mask-1 and Mask-2 across different 
LL categories.

Figure 6. Evaluation of automatic segmentation with manual segmentation. The images were colorized after 
obtaining TP (green), FP (red), and FN (yellow). (a, b) Mask-1, (c, d) Mask-2.
TP: True positive; FP: False positives FN: False negative.

(a) (c)

(b) (d)

TABLE 2
Calculated WMH LL values

AD

Type ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

LL (mL) 0.42 17.87 21.14 2.18 5.27 59.74 18.04 1.50 38.68 3.65 7.23 4.52 14.63 4.42 28.13

Average (mL) 15.16±16.59

VaD

Type ID 1 2 3 4

LL (mL) 40.27 13.37 33.26 29.97

Average (mL) 29.22±11.40

WMHs: White matter hyperintensities; LL: Lesion load: ID: Identifier; AD: Alzheimer’s disease; VaD: Vascular dementia.
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TABLE 3
Similarity indices and sensitivity values

Type ID LL
(mL)

Mask-1
SI

Mask-1
sensitivity

Mask-1
(Average SI)

Mask-2
SI

Mask-2
sensitivity

Mask-2
(Average SI)

AD 6 59.74 0.99 0.97

High LL

0.98 0.95

High LL
VaD 1 40.27 0.98 0.98 0.98 0.99

AD 9 38.68 0.98 0.96 0.97 0.96

VaD 3 33.26 0.99 0.99 0.98 0.99

VaD 4 29.97 0.98 0.97

Medium LL

0.99 0.98

Medium LL

AD 15 28.13 0.99 0.97 0.98 0.97

AD 3 21.14 0.77 0.79 0.87 0.99

AD 7 18.04 0.97 0.96 0.98 0.98

AD 2 17.87 0.82 0.92 0.85 0.97

AD 13 14.63 0.89 0.94 0.87 0.93

VaD 2 13.37 0.68 0.53 0.95 0.95

AD 11 7.23 0.73 0.64

Low LL

0.84 0.94

Low LL

AD 5 5.27 0.66 0.81 0.57 0.94

AD 12 4.52 0.90 0.92 0.89 0.96

AD 14 4.42 0.20 0.11 0.78 0.66

AD 10 3.65 0.18 0.10 0.44 0.40

AD 4 2.18 0.66 0.56 0.61 0.80

AD 8 1.5 0.37 0.48 0.38 0.85

AD 1 0.42 0.71 1.00 0.28 1

Averages 0.76 0.77 0.80 0.91

ID: Identifier; LL: Lesion load: SI: Similarity index; AD: Alzheimer’s disease; VaD: Vascular dementia.

TABLE 4
Lesion load, SIs, and sensitivity values for ABVIB images

Type ID LL 
(mL)

Mask-1
SI

Mask-1
sensitivity

Mask-1
(Average SI)

Mask-2
SI

Mask-2
sensitivity

Mask-2
(Average SI)

PwWM 1 49.48 0.99 0.99

High LL

0.99 0.99

High LLPwWM 2 31.48 0.73 0.60 0.94 0.94

PwWM 3 30.67 0.99 0.99 0.99 1.00

PwWM 4 24.56 0.99 0.98

Medium LL

0.99 0.98

Medium LL

PwWM 5 22.30 0.86 0.76 0.99 1.00

PwWM 6 20.06 0.88 0.82 0.99 1.00

PwWM 7 19.36 0.98 0.96 0.99 0.99

PwWM 8 18.52 0.08 0.04 0.50 0.35

PwWM 9 15.33 0.69 0.84 0.82 0.91

PwWM 10 14.09 0.97 0.95 0.99 0.99

PwWM 11 10.12 1.00 1.00 1.00 1.00

PwWM 12 7.62 0.26 0.15

Low LL

0.97 0.94

Low LL

PwWM 13 7.01 1.00 1.00 1.00 1.00

PwWM 14 5.58 0.73 0.84 0.83 0.99

PwWM 15 4.31 0.06 0.03 0.08 0.04

PwWM 16 3.91 0.10 0.06 0.80 0.67

Averages 17.78 0.71 0.69 0.87 0.86

ID: Identifier; SI: Similarity index; ABVIB: Aging Brain: Vasculature, Ischemia, and Behavior; LL: Lesion load.



181Analysis of white matter in Alzheimer's and vascular dementia patients

In Group 1, the mean SI was 0.76 for Mask-1 and 
0.80 for Mask-2. Lower SI values were reached in 
both masks at low LL (Mask-1 mean: 0.55; Mask-2 
mean: 0.60). However, these values were enhanced 
in medium and high LL. The mean SI was calculated 
as 0.87 for Mask-1 and 0.93 for Mask-2 in medium LL 
(10 mL< LL ≤30 mL), whereas it was 0.99 for Mask-1 
and 0.97 for Mask-2 in high LL (>30 mL).

In Group 2, the mean SI was 0.71 for Mask-1, 
and the algorithm was more successful for Group 1 
in Mask-1. The mean SI was 0.87 for Mask-2, which 
shows that the algorithm was more successful for 
Group 2 in Mask-2. On the other hand, when we 
analyzed the evaluation values in Tables 3 and 4, 
the ratios were consistent between Group 1 and 
Group 2.

DISCUSSION

In this study, brain WMHs of patients 
with dementia were analyzed via MRI using a 
unimodal, automatic, and unsupervised method. 
As mentioned in the introduction section, there 
are different methods for WMH segmentation: 
unimodal/multimodal, automatic/manual, and 
supervised/unsupervised. This study primarily 
aimed to detect WMHs correctly via a unimodal, 
fully automatic, and unsupervised method.

The reasons for using a unimodal, fully 
automatic, and unsupervised method in the study 
are numerous. First, unimodal studies have more 
advantages than multimodal studies. Multimodal 
studies need more than one MRI modality,[11,12,20] and 
this causes some disadvantages. The acquisition 
of several volumes for each patient is expensive 
and requires a registration algorithm, which 
can introduce errors and increase complexity.[24] 
Moreover, the patients stay in the MRI scanner 
for a longer time, and this could cause motion 
artifacts.[24] As the number of images increases, 
memory requirements and the computational 
complexity of the algorithm increase.[10,24] For 
these reasons, a unimodal method was developed 
in this study. When developing this unimodal 
method, the FLAIR modality was preferred since 
WMHs are detected best in FLAIR images. 
However, there are hyperintense artifacts that may 
cause FPs in FLAIR images. To utilize the FLAIR 
modality, masking processes were developed to 
prevent FPs; thus, we could use only the FLAIR 
modality to detect WMHs.

The most important advantage of 
automatic methods is that they do not need 

manual interference. Although there is no gold 
standard for WMH segmentation, except manual 
segmentation,[2,8,11-19] manual segmentation of the 
brain is time-consuming and labor-intensive. An 
experienced neuroradiologist requires significant 
time and effort to achieve results while studying 
images slice by slice. Moreover, these results 
suffer from high intraobserver and interobserver 
variability,[20] are fully prone to human errors, and 
are hardly practical, particularly in large-scale 
studies and longitudinal studies.[20] Semi-automatic 
methods are less time-consuming and more 
reproducible but still need user interaction;[36,37] 
therefore, they suffer from intraobserver and 
interobserver variability. Furthermore, they remain 
labor-intensive, particularly for large-scale studies.[12] 
For these reasons, we tried to use an automatic 
method for this study.

Supervised methods require manually segmented 
data for training.[28] The constraints of manual 
segmentation were previously mentioned. Therefore, 
we aimed for this study to be unsupervised.

Overall, it is apparent that unsupervised, fully 
automated, and unimodal methods are considered 
more advantageous and are often preferred.[16,21,24,28]

White matter hyperintensities are patchy, small, 
diffuse, irregular, faint, and vague; they can be 
nodular or confluent. Moreover, their locations 
are variable. They do not have a particular form, 
have fuzzy borders, and are inhomogeneous. Their 
intensities are quite similar to healthy GM. All these 
characteristics are among the factors that make 
WMH detection more challenging. 

When determining WMHs, Mask-1 and Mask-2 
were applied to the images aiming to limit the 
ROI. Mask-1 and Mask-2 were obtained by applying 
modifications to WM regions segmented by SPM. 
Segmentation algorithms in SPM might be sensitive 
to the presence of large abnormalities in the brain. 
Therefore, the possibility of the WMH segmentation 
being affected by the SPM process was eliminated 
in this study since the WMH determination was 
conducted in the skull-stained images and not in 
SPM images.

It is clear from Figures 6 that the blurring 
process caused a limited increase in FPs. Increasing 
FPs can be viewed as a disadvantage. However, 
when the total result was evaluated according to 
the SI value, Mask-2 was more successful than 
Mask-1 in both groups. This is because although 
FPs increase, FNs are remarkably decreased due 
to Mask-2. As can be observed in equation (2.4), 
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sensitivity was not affected by FP but only by TP 
and FN. Thus, reductions in FN in Mask-2 had more 
success on sensitivity values in both groups than SI 
(Figures 3, 4).

In WMH detection studies, SI values above 0.70 
are considered to represent a good agreement 
between different segmentation methods.[10,26,38,39] 

Nevertheless, 0.70 can generally be achieved in 
data with medium and high LL. It is observed that 
success is generally reduced in low LL.[10,11,17,25,27] 

When the LL is lower, the effects of errors caused 
by segmentation or other reasons on the results 
increase.[10] Furthermore, in this study, a lower 
SI value was reached at low LL (Group 1, Mask-1 
0.55 and Mask-2 0.60; Group2, Mask-1 0.43). 
Nevertheless, in Group 2, even in low LL, Mask-2 
SI value was higher than 0.70 with 0.73. In medium 
and high LL, results were increasingly above 0.70, 
as shown in Tables 3 and 4.

Since WMH is the most prominent characteristic 
in VaD, these patients are expected to suffer 
from WMH more than patients with AD. Thus, 
in patients with VaD, WMH LL is expected to be 
higher, and the standard deviation is expected 
to be lower. White matter hyperintensity is not a 
prominent feature in AD; some patients with AD 
may exhibit it, while others may not. Therefore, 
in patients with AD, WMH LL is expected to be 
lower, and the standard deviation is expected to 
be higher. As mentioned before, WMH detection 
success is expected to increase with higher LL, 
and patients with VaD had a higher WMH LL than 
patients with AD in this study. Therefore, when 
we analyzed SI and sensitivity averages in each 
patient group, we saw that in patients with VaD, 
both algorithms had higher success.

As could be observed in Table 3 for Group 1, 
Mask-2 had higher SI and sensitivity averages than 
Mask-1, except for high LL. As mentioned before, 
the blurring process used in Mask-2 considerably 
reduced FNs but slightly increased FPs. False 
negatives were more common in medium and low 
LL. Thus, in data that had medium and low LL, 
even if FPs slightly increased, the reduction in FNs 
affected the results positively. In data that had high 
LL, FNs were uncommon, and SI was high (0.99). 
Therefore, even if there was a slight increase in FPs, 
SI was affected negatively by high LL. On the other 
hand, Table 4 for Group 2 shows that Mask-2 had 
higher SI and sensitivity values for all LL; therefore, 
it can be said that the reduction in FNs achieved a 
better result in Group 2.

According to the studies conducted in the 
literature,[1-28] it was observed that even if clinical 
data were used, MRI data were obtained with 
a particular protocol. Since this study was 
retrospective, MRIs were scanned by various 
technicians on different dates with different devices 
and using many different protocols (data acquisition 
protocols are given in Table 1). Although these 
differences increase the complexity of this study, 
this makes it more likely to adapt the study to 
be more similar to routine practice. However, to 
evaluate the validity of the method on images taken 
according to a fixed protocol, we also applied our 
method to ABVIB images and determined that in 
most criteria, our method showed consistent results 
between both groups. For example, as mentioned 
before, success increased with LL in both groups. 
Mask-2 demonstrated better success in both groups, 
as intended.

One of the strengths of this study was the use 
of a unimodal, fully automatic, and unsupervised 
method for detecting WMHs. The adoption of a 
unimodal approach reduces costs and complexity 
by eliminating the need for multiple MRI 
modalities. Using FLAIR images is highlighted as 
the most effective modality for detecting WMHs. 
The study developed specific masking processes 
to prevent false positives that could arise from 
FLAIR images. Automatic methods provide more 
efficient and reproducible results as they do not 
require manual intervention, which is especially 
important for large-scale and longitudinal studies. 
Additionally, they minimize human errors by 
reducing interobserver and intraobserver 
variability. The unsupervised approach allows 
data processing without the need for manual 
segmentation, eliminating the dependency on 
experienced neuroradiologists. Another significant 
strength of the study was its ability to be applied 
to retrospective MRI data scanned with various 
protocols. This adaptability makes the method 
more compatible with routine clinical practice. 
The application of Mask-1 and Mask-2 improved 
sensitivity and specificity indexes by significantly 
reducing FNs. Mask-2 demonstrated higher success 
rates due to its ability to reduce FNs.

The most important limitation of this study was 
the limited sample size. Only 19 patients' images 
were examined, with only four of them with VaD. 
Future studies should improve the methods and 
increase the number of samples, particularly for 
VaD. Additionally, applying different published 
methods to original data (Group 1) and comparing 
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them would be advantageous. A common 
shortcoming of WMH detection studies is lower 
accuracy in low LL.[9,15,16,24,26] A lower SI is often 
reached in low LL.[1,9,25] Similarly, in this study, 
lower SI values were achieved for both masks 
in Group 1 at low LL. However, in Group 2, 
even if Mask-1 showed restricted performance, 
Mask-2 could achieve SI values over 0.70 in every 
LL, including low LL. To further improve these 
results and achieve higher success, Mask-2 may be 
enhanced to reduce FPs, or different masks may 
be developed in future studies.

In conclusion, this study contributes to the 
literature by presenting an automatic, unimodal, 
and unsupervised method. It offers a unique dataset 
with diverse scanning parameters and is applied to 
images obtained following a standardized protocol. 
As the elderly population grows, age-related diseases 
such as dementia increase. Automatic, quantitative 
methods are essential for monitoring these diseases 
and analyzing WMHs.
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